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INTRODUCTION
ECL is a high performance technology that has been

available for the designer since the 1960s. It has always been
at least an order of magnitude better in propagation delay
and skew when compared with CMOS and TTL logic. ECL
is fabricated with unsaturated logic and low–level
differential drive. Its performance is a vast improvement
over all other logic families. In the late 1960s, when the
standard TTL family offered 20 ns gate delay and the CMOS
4000 family had delays of 100 ns or more, MECL–10K
offered 1 ns delay. Since then, CMOS logic families have
progressed remarkably and now offer approximately ∼2 ns
delay. However, ECL logic is now at 150 ps delay, still 25
times faster than similar function CMOS.

ECL and Positive ECL (PECL) are the same product. All
ECL can be run as PECL. It was commonplace to run ECL
at –5.2 V, but this was never necessary. Modern ECL is quite
different from MECL–10K. There were three common
schemes: –5.2 V, +5.0 V (PECL), and +3.2 V. Operating
voltage is now down from 5.2 V to as low as 2.5 V. Unlike
CMOS, bipolar ECL parts do not degrade with lower
voltage. As long as the device is specified to operate at that
voltage, performance is substantially the same at any voltage
within the operating range. The critical speed/delay
specifications on a modern low–voltage ECL device are the
same at 2.5 V as 3.3 V.
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Figure 1. MECL–10 0K Same Product Used
With Different Supply Options

ECL has used differential signaling since its inception.
The output of an ECL device is taken from an emitter, and
is normally about 50 Ω. Since the source impedance of the
driver was a close match to most transmission wires, it was
only necessary to terminate the line at the receiver input.
This case represents a doubly–terminated transmission line,
the ideal case. The signaling level is +/–.400 V. Designers
using ECL logic usually designed 50 Ω traces or twisted
pairs and terminated with a 50 Ω resistor.

As with CMOS, today’s ECL is designed with very small,
sub–micron transistors. Since older ECL (such as
MECL–10K families) used junction isolation with large
parasitics, large amounts of current were needed to
overcome the parasitics. Modern ECL uses oxide isolation
techniques, thereby reducing parasitics considerably and
raising the operating range of the devices. Oxide isolation
and the very high fτ of the devices combine to lower the
power and raise the frequency of the device. Many of today’s
ECL gates can be toggled at >3.0 GHz.

CMOS technology was created in the 1960s and began life
as the venerable 4000 series. CMOS was low power and
slow. Clocking rates beyond 10 MHz was rare. These
devices used 10 µ “metal gates.” As technology progressed,
poly–silicon gates replaced metal gates and the geometry
shrank to today’s sub–micron size. Products like
ALVC/VCX use 0.5 µ or smaller geometry and offer 2 ns
delay and 24 mA of drive. VCX parts have toggle frequency
specifications of >150 MHz.

CMOS became the workhorse of the semiconductor
industry. One of the severe limitations to speed and power
was the “rail–to–rail” operation of standard CMOS. A VCX
or ALVC device, driving from rail–to–rail from a 3.3 V
supply, swings in excess of 2.0 volts. In order to overcome
the capacitance typically found on a bus structure, a
terminating resistor is used. To get the fastest speed possible,
a resistor of 100 Ω is usually selected to drive 24 mA per
circuit. The parallel resistor needs to be this low to overcome
the high shunt capacitance that can be found on the bus. A
value of 100 pf or more is not uncommon. The resistor alone
creates a load of 75 mW per circuit. An “X8” arrangement
would be 560 mW. It is now clear that low voltage CMOS
is not synonymous with low power.
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By reducing the output swing and driving terminated
transmission lines, improvements can be made. Several
years ago, a specification called LVDS was approved by the
EIA. The EIA–644 specification specifies a voltage swing
and set of voltage levels. Interestingly, EIA–644 does not
specify the technology. Typically implemented in
submicron CMOS, the LVDS products on the market
initially promised high performance and low power. Some
of the more exuberant promoters have foretold the death
knell of ECL rather prematurely.

LVDS, like CMOS, accomplishes its high performance by
using small voltage swings and matched transmission lines.
Some devices are available that use a scheme similar to what
has been shown. The transmitter is a push–pull set of
N–Channel transistors fed from a current source. The
current source is limited to 3.5 mA and drives +/–350 mV
into the receiver. The receiver is a differential amplifier with
a threshold of about 100 mV. If the signal exceeds this
threshold, the receiver switches. Since the predominant
power is dissipated in the resistor, the power is simply the
Vcc voltage multiplied by the current, or 13 mW/driver.
Devices such as the one above can transmit signals perhaps
as high as 200 MHz over tens of meters.

This signaling scheme can be integrated into
ASICs/FPGAs and ASSPs. Compared to standard CMOS,
there is quite a reduction of power. Signaling beyond
200 MHz is now available.

How does this compare to modern ECL? EIA–644 is
useful for point–to–point communications, but is not very
useful for point–to–multipoint communications. A new
specification called Bus–LVDS (BLVDS) was created. It
was thought that since the transmit/receive I/Os are high
impedance, all that was necessary was to doubly terminate.
Nearly all manufacturers of BLVDS parts recommend 27 Ω
double termination. This requires about 12 mA to get the
required voltage swing of +/–200 mV. It is then evident that
the power per output section is about 40 mW. An octal
device would require 320 mW (∼ approximately 100 mA at
3.3 V) to drive the terminating resistors. The LVDS388 is an
8–bit, octal transceiver manufactured in submicron CMOS
technology. The manufacturer specifies its operation to
200 MHz and provides the following chart at 3.3 V.
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The driver must match the load for the signals to propagate
cleanly. Strip lines and transmission lines typically have
characteristic impedances of 50–100 Ω. Since the receiver is
a comparator with 100 mV sensitivity, the transmitter needs
to drive 250 mV or so to accommodate losses on the line.
Indeed, the original notes1 from National Semiconductor
show a 3.5 mA driver and a 100 Ω termination. This implies
that the power needed to be about 15 mW (from a 3.3 V
supply) per driver. The 100 Ω case is valid for
point–to–point applications. However, the BLVDS, or
multipoint, case is quite different.

Cox, et al. [2], show that a multipoint system consists of
a length of open transmission line with a large number of
discrete capacitors spaced uniformly along the line. Since
the driver is high impedance, a source termination is needed
at the driver and a load termination is needed at the farthest
end. This concept is the same whether the transmission line
is balanced (differential) or single–ended. In this diagram,
the 12 pf loads are the assumed loads of each receiver plus
the capacitance of the bus and board. The loads are
uniformly distributed along the length of the bus. Cox, et al.,
make a very reasonable assumption that the diagram can be
represented by a uniformly distributed capacitance. They
show that the characteristic impedance of a 50 Ω line
reduces by a factor of 3. Since the receiver sensitivity
remains the same, the receiver needs to see the same voltage
at its input. With an open stripline impedance of 50 Ω, the
new Zo is about 15Ω.
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It takes seven times the current to drive 15 W, compared
to the nominal 100 Ω lines that were originally
mentioned [2]. Each driver consumes 75 mW. A by–eight
driver is, therefore, >500 mW, or 150 mA (at 3.3 V). The
manufacturer’s data sheet shows these values, as well.

A comparison of various devices from four manufacturers
was performed. The devices were: MC100LVEP111 from

ON Semiconductor, for ECL; 92CK16 (one of six clock
buffers) and 92LV090A, a 9–channel bus transceiver from
vendor “A,” and LVDS388, an 8–bit bus transceiver from
vendor “B” for BLVDS; and FCT3805, an 8–bit clock
distribution device from vendor “C” for CMOS. Each
specification comes from the original vendor’s data sheet.
The following table displays the results.

Table 1. Device Comparison

100LVEP111 92LV090A 92CK16 LVDS388 FCT3805 Units

Part Type Clock Distrib Bus Trans Clock Distrib Line Recvr Clock Distrib

No. of Circuits 10 9 6 8 2 x 5 Outputs

No. of Pins 32 64 24 38 20

Manufacturer ON Vendor “A” Vendor “A” Vendor “B” Vendor “C”

Technology Bipolar CMOS CMOS CMOS CMOS

Signaling Levels ECL BLVDS BLVDS BLVDS LVTTL

Inputs Differential Differential Differential Differential Single–ended

Signal Swing p to p 400 300 300 300 2200 mV

Power Supply 2.5, 3.3 3.3 3.3 3.3 3.3 Volts

Fmax 1500 50 125 200 100 MHz

Current Drain 100 170 100* 160 (Note 2.) ~100 mA

Power Disp 250 (Note 1.) 560 330 528 330 mW

Pin to Pin Skew 10 50 50 100 350 (Note 3.) ps

Part to Part Skew 100 1600 2500 1000 500 ps

Prop Delay 400 2000 2800 2500 3500 ps

1. @ 2.5 Volts
2. 200 MHz, 3.3 Volts
3. 100 MHz, 30 pf
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Figure 4. Power Consumption at Maximum
Speed for Various Devices
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Conclusion
BLVDS has high power consumption. The LVDS388

device runs at 200 MHz, but consumes over 500 mW. The
doubly–terminated 27 Ω resistors cause much of the power
consumption. This requires about 18 mA per driver to
achieve a differential voltage high enough to meet the input
requirements (∼300 mV). With eight devices, this implies
144 mA, which is very close to the specifications shown on
the data sheet. BLVDS has pin–for–pin skews that are two
to four times worse than ECL. The part–to–part skew is five
to ten times worse than ECL.

BLVDS has extended the range of CMOS operation from
100 MHz to as high as 250 MHz. The technology can be
integrated onto ASICs and ASSPs, extending the range of
these parts. It can be used to drive transmission lines

10 meters or more. Even for these applications, modern
ECL drivers can drive low impedance cables, such as
75 Ω RG–6, beyond 1 GHz hundreds of meters. This
compares to 250 MHz for LVDS.

ECL was always thought to be very high power. However,
modern submicron geometry has brought ECL operating
voltage down as low as 2.5 V and current drain down as low
or lower than CMOS (either TTL or BLVDS). This is true,
even though CMOS operates at one–fifth the speed. LVDS
has borrowed some concepts, such as differential
comparator input, from ECL and improved standard CMOS.
However, the technology cannot compete in either speed or
power skew with submicron ECL. Ohm’s law still rules: if
a device needs to drive a small resistor value, then large
currents are needed. ECL is lower power in many
applications and will operate at five to ten times the speed.
Xilinx [3], the world’s leading FPGA supplier, supports
nearly all high–performance standards. The following is a
quote from their Virtex  product line description.

“LVPECL clocking becomes an essential requirement as
FPGA system clock frequencies exceed 100 MHz. The
Virtex–E device supports high–performance LVPECL
clock inputs for global and local clocking with frequencies
in excess of 300 MHz.”
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